(E)-ALKENYL THIOCYANATES FROM (E)-ALKENYLPENTAFLUOROSILICATES BY THE OXIDATIVE CLEAVAGE WITH COPPER(II) THIOCYANATE¹

Kohei Tamao, Toshio Kakui, and Makoto Kumada

Department of Synthetic Chemistry, Kyoto University, Yoshida, Kyoto 606, Japan

Summary: (E)-Alkenylpentafluorosilicates react with copper(II) thiocyanate in DMF at ambient temperature to give (E)-alkenyl thiocyanates stereoselectively in high yields.

As part of our current interest in the application of organopentafluorosilicates in organic synthesis,² we have recently reported that organopentafluorosilicates react with copper(II) chloride and bromide to give the corresponding organic halides.³ We have now found that the thiocyanate group also transfers from copper(II) thiocyanate to alkenyl and phenyl groups in organopentafluorosilicates.

$$K_2\left[R \xrightarrow{\text{DMF}} R \xrightarrow{\text{DMF}} R \xrightarrow{\text{Cu(NCS)}} + 2 Cu(NCS)_2 \xrightarrow{\text{DMF}} R \xrightarrow{\text{SCN}} + 2 Cu(NCS) + K_2[(SCN)SiF_5](?)$$

This reaction has opened up a simple and general method for the preparation of (E)-alkenyl thiocyanates. While there have been many methods for the preparation of alkyl and allyl thiocyanates, only a few methods have been developed for the preparation of alkenyl derivatives, in spite of their expectative versatility in synthetic organic chemistry.⁴

The nature of solvent influenced the yield of product. For example, the yield of (E)-1octenyl thiocyanate in the reaction of (E)-1-octenylsilicate with two equiv. of $Cu(NCS)_2^5$ was 33% in benzene, 40-45% in EtOH, MeCN or ether, 51% in acetone, and 59% in DMF. The use of three equiv. of $Cu(NCS)_2$ improved the yield up to 74% in DMF. The silicate reacted also with a mixture of KSCN and $CuSO_4 \cdot 5H_2O$ (2:1) which should form $Cu(NCS)_2$ *in situ*, but the yield was not so high (60%). The addition of an excess of KSCN markedly decreased the yield (34%), suggesting that a cuprate such as $K_2Cu(NCS)_4$ might be less reactive than the neutral Cu(II) salt. The most

111

satisfactory result has been obtained under conditions described in the following typical procedure.

A mixture of $K_2[(E)-C_6H_{13}CH=CHSiF_5]$ (936 mg; 3.0 mmol), copper(II) thiocyanate (1.620 g; 9.0 mmol), and dry DMF (10 mL) was stirred at room temperature for 3 h. The color of the reaction mixture changed from black to yellow-brown, indicative of the reduction of copper(II) to copper(I). Ether was added and the mixture was filtered. The filtrate was washed with water and 10% brine, and dried over magnesium sulfate. After evaporation of solvent, bulb-to-bulb distillation of the residue under reduced pressure gave 338 mg (67% yield) of (E)-1-octenyl thiocyanate as a colorless liquid.

Compounds listed in Table 1 were obtained under similar conditions. The reaction is highly stereoselective at least for terminal (E)-alkenylsilicates, giving isomerically pure (E)-alkenyl thiocyanates only. The product from 1-butyl-1-hexenylsilicate was also assigned analogously to the (E) isomer, which was contaminated with a small amount (ca. 7%) of the other isomer. The IR spectra of alkenyl thiocyanates exhibit, in addition to a sharp strong band at 2155 cm⁻¹ due to thiocyanate, a weak to medium broad band in the 2100 cm⁻¹ region, which is characteristic of isothiocyanate. However, GLC analysis, ¹H NMR and mass spectral data, and comparison with literature data of the known compound (PhCH=CHSCN)⁶ were inconsistent with the presence of any isothiocyanate as an impurity. The phenylsilicate also formed phenyl thiocyanate in about 40% yield, but alkylsilicates gave only trace amounts of alkyl thiocyanates.

The mechanism is not clear yet, but may be similar to that for the halogen transfer from copper(II) halides to organopentafluorosilicates³ and other organometallics.⁷ The reaction may obey the stoichiometry $RSiF_5^{2-}/Cu(NCS)_2 = 1/2$,³ but an excess amount (3 equiv.) of the latter may be required owing to its great tendency to decomposition into Cu(NCS) and $(SCN)_2$.⁵ The main difference from the halogen transfer reaction resides in that copper(II) thiocyanate does not react with alkyl silicates. Further mechanistic studies on copper(II)-oxidation reactions of organopentafluorosilicates are now in progress.

Acknowledgment. We thank the Grant-in-Aid for Scientific Research of the Ministry of Education (No. 303523), the Yamada Science Foundation, and Shin-etsu Chemical Co., Ltd. for support of the work.

Thiocyanates a
I Phenyl
rl and
Alken)
ties of
Propert
Spectral
, and S
Index,
Refractive
Yield,
Table 1.

		Bellevin in the second s	a statistica de la constatistica de la constatistica de la constatistica de la constatistica de la constatistic		
Product	Yield $(\$)^b$	n_{D}^{20}	lΗ NMR ^α , δ, ppm	IR^d , cm ⁻¹	Mass [@] (rel. Int.)
C ₆ H ₁₃ C=C ^H H ^C SCN	67 ^f (74) ^g	1.4815	0.88 (t, 3H) 1.32 (br.s, 8H) 2.18 (q, J=6 Hz, 2H) 5.74 (q, J=16 Hz, 1H) 6.16 (d.t, J=16 Hz, 6 Hz, 1H)	2160 (s) 945 (m)	169 (M ⁺ , 27.5) 99 (23) 86 (32) 83 (35) 68 (100)
C ₆ H ₅ C=C ^H H ^{SCN}	53 <i>h</i>	1.6226 i	(d, $J = 15 \text{ Hz}$, 1H) ² (d, $J = 15 \text{ Hz}$, 1H) (s, 5H)	2155 (s) ^t 2100 (w, br) 947 (s) 738 (s) 670 (s)	
NCCH ₂ CH ₂ OCH ₂ C=C	49 ^f	1.5106	2.63 (t, $J=6$ Hz, 2H) 3.22 (t, $J=6$ Hz, 2H) 4.15 (t, $J=2$ Hz, 2H) 6.22 (t, $J=2$ Hz, 2H)	2250 (m) 2155 (s) 2100 (w, br) 1113 (s) 938 (s)	168 (* 1.7) 110 (100) 98 (34) 57 (57) 54 (39)
CH ₃ 0 ₂ C(CH ₂) ₆ C=CH ₃ O ₂ CN _H	¢02	1.4851	1.15-1.7 (br, 12H) 2.1-2.35 (m, 4H) 3.61 (s, 3H) 5.82 (d, J=15 Hz, 1H) 6.15 (d.t, J=15 Hz, 7 Hz, 1H)	2155 (m) 2100 (w, br) 1738 (s) 1175 (m) 1170 (m) 945 (m)	255 (M ⁺ , 34) 224 (52) 112 (85) 100 (58) 99 (100) 87 (48)
c4H9_C=C_SCN	م ^و م ۲	1,4368	0.8-1.1 (m, 6H) 1.1-1.7 (m, 8H) 1.9-2.3 (m, 2H) 2.40 (t, <i>J</i> =7 Hz, 2H) 5.90 (t, <i>J</i> =7 Hz, 1H)	2155 (s) 2080 (m, br) 1615 (s) 936 (m) 858 (m)	197 (M ⁺ , 44) 99 (59) 98 (100) 95 (54) 83 (57) 55 (77)
C ₆ H ₅ SCN	42°t	1.5685	7.3-7.6 (m, aromatic)	2145 (s) 1475 (s) 1440 (s) 740 (s) 685 (s)	
$^{\alpha}$ Satisfactory analytical data have been obtained. film. e 24 eV. f Isolated by distillation. g GL 1 H NMR (CDCl ₃); 6.40 (d), 6.94 (d), 7.30 (s). IR;	ical data have b olated by distil (d), 6.94 (d), 7	have been obtained distillation. $^{\mathcal{G}}$ (d), 7.30 (s). IF	b Isolated yield C Yield. h Silica 2170 cm ⁻¹ . j Sili	ce. ^c 100 MH ₂ nzene (1:1).	t, CCl ₄ /TMS. ^d Liquid ⁱ Lit. ⁶ : n _D ²⁴ 1.6178.

REFERENCES

- 1. Organofluorosilicates in Organic Synthesis. Part 8. For part 7, see ref. 2.
- 2. J. Yoshida, K. Tamao, T. Kakui, and M. Kumada, *Tetrahedron Lett.*, 1141 (1979) and references cited therein.
- 3. J. Yoshida, K. Tamao, A. Kurita, and M. Kumada, Tetrahedron Lett., 1809 (1978).
- R. G. Guy, "The Chemistry of Cyanates and Their Thio Derivatives," S. Patai, Ed., John Wiley, New York, N.Y., 1977; Part 2, Chapt. 18, pp. 819-886.
- 5. C. L. Jenkins and J. K. Kochi, J. Am. Chem. Soc., 94, 856 (1972).
- 6. R. G. Guy and I. Pearson, Bull. Chem. Soc. Japan, 49, 2310 (1976).
- 7. J. K. Kochi, "Organometallic Mechanisms and Catalysis," Academic Press, New York, N.Y., 1978, pp. 548-551.

(Received in Japan 1 October 1979)